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SimCenter

Goal: Develop an open-source framework and extensible 
software tools for researchers in natural hazards engineering
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“There is uncertainty inherent in all aspects of earthquake 
engineering that needs to be addressed on an ongoing basis with 
transformative research, process and code development, and 
focused implementation programs.”

- National Research Council 2011. Grand Challenges in Earthquake Engineering Research: A Community Workshop 

Report. Washington, DC: The National Academies Press. https://doi.org/10.17226/13167 

Transformational software that supports uncertainty 
quantification (UQ), performance-based engineering, 
community resilience

SimCenter’s scientific workflow
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Why UQ workflow?
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Hazard
Analysis

Structural
Analysis

Damage
Analysis

Loss
Analysis

L: Location
D: Design

IM: Intensity
Measure

EDP: Engg.
Demand Param.

DM: Damage
Measure

hazard model
P(IM|L)

struct. model
P(EDP|IM)

fragility funct.
P(DM|EDP)

loss model
P(DV|DM)

DV: Decision
Variable

L, D adequate?
site hazard

IM

structural 
response

EDP

damage
DM

performance
DV

PBE Framework (Adapted from Porter 2003)

Uncertainty from several sources, including:
▪ Inherent variability
▪ Model parameter uncertainty
▪ Model form uncertainty

SimCenter’s scientific workflow
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SimCenter Applications
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UQ EVENT EDP DL DL REC BECloud

Dakota
SimCenter UQ
UCSD UQ

Tapis
Agave

Hazus Data
Pact Data

OpenFOAM, GeoClaw, ADCIRC

MDOF_LU
AutoSDA

pelicun
Wind

WE-UQ

Custom UQ

DatabaseApp Component

BRAILS

SURF

Earthquake

EE-UQ

Response estimation

PBEPerformance assessment

R2DRegional risk assessment

External Data & Applications

FEM SAM

quoFEM

OpenSees
FEAPpv
OpenSeesPy

Custom FEM

Hydro-UQ

Tsunami/Inundation
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Types of UQ
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Forward Uncertainty Quantification

Inverse Uncertainty Quantification



Sang-ri Yi yisangri@berkeley.edu

Forward UQ

• Propagation of uncertainty from inputs to outputs
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A

Simulation Model

Which design would you select?

Probability
distribution

E

Fy
Max disp

threshold

→ Uncertainty quantification
is essential in making decisions

Alternative 
Design

Original

(OpenSeespy user manual  - Upadhyay)

https://openseespydoc.readthedocs.io/en/latest/src/ModelRendering.html
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• Based on assumptions on inputs, predict the uncertainty in outputs

Forward UQ
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RV1

RV2

RVN

Repair cost

Down time

Mean expected down time
Standard deviation of repair cost

Probability of significant damage

Importance of each parameter
…

Computer 
Simulation

Global sensitivity analysis

Forward sampling

Reliability analysis
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• Let us first consider single RV / Response

Forward UQ

9

Response

Computer 
Simulation

Young’s modulus

Mean expected down time
Standard deviation of repair cost

Probability of significant damage

Importance of each parameter
… Global sensitivity analysis

Forward sampling

Reliability analysis

How do we get the input distribution?
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Probability distribution of RV

• Everything is possible but not everything is probable
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Young’s modulus

• Based on underlying physics of quantity
• Select a simple distribution and apply reasonable limits

Engineering Judgement
• Bayesian updating 

→inverse UQ

+     Observation

(Arrayago et al. 2020)

Probability 
distribution

Examples
Known range of interest - Uniform distribution 
Assumption - Gaussian with 10% variation
From reference 
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Forward Propagation
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Young’s modulus Response

Computer 
Simulation

• Based on assumptions on inputs, predict the uncertainty in outputs

Mean
Standard deviation
Probability distribution

• A straightforward approach Monte Carlo sampling

• Is the model numerically expensive? Few simulations as much as possible
- Better UQ algorithms

e.g. Latin hyper cube sampling
- Approximation methods

e.g. Surrogate modeling
- Combination of both

e.g. Multi-fidelity modeling
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Reliability Analysis
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Young’s modulus
ResponseComputer 

Simulation

• Probability of the response exceeding a threshold level
• Important for design decision

• When the model is expensive & when failure probability is low 
It is desirable to reduce the number of simulations

• A straightforward approach: Monte Carlo sampling

𝑃𝑓 = 10% requires 1000 simulations

𝑃𝑓 = 0.001% requires 1000000 simulations

𝑐. 𝑜. 𝑣 =
𝑁𝑃𝑓
1 − 𝑃𝑓

< 0.1

threshold

To reduce the number of simulations
- Better UQ algorithms

Importance sampling, subset simulation
- Approximation methods

Surrogate modeling, First-order approximations
- Combination of both
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Global Sensitivity Analysis
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Max disp

Computer 
Simulation𝐹𝑦,𝑐𝑜𝑙

𝐹𝑦,𝑏𝑒𝑎𝑚Are all the parameters 
equally impacting the 
response?

𝐸𝑏𝑒𝑎𝑚

𝐹𝑦,𝑏𝑒𝑎𝑚

𝐹𝑦,𝑐𝑜𝑙

Max
disp.

Probably not. 
Then what are the variables 
that are actually influential?

Compared to the other variables,
𝐹𝑦,𝑐𝑜𝑙 is less important.

→ You might want to let 𝐹𝑦,𝑐𝑜𝑙 be deterministic

Max 
disp

𝐹𝑦,𝑏𝑒𝑎𝑚 𝐹𝑦,𝑐𝑜𝑙

Max 
disp

high
sensitivity

low
sensitivity

S=0.9 S=0.05
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Surrogate modeling
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• Response surface representation

Young’s modulus

Max disp.

Young’s modulus
Damping ratio

Max disp.

Two parameters

Young’s modulus

Max disp.

Max disp. = f(Young’s modulus)

One parameter

• Usually the curve (surface) is very flexible & general
Neural networks, Gaussian process model, polynomial chaos…

• Design of experiments are used to reduce the number of simulations
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Types of UQ

Forward Uncertainty Quantification
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Inverse Uncertainty Quantification
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Inverse UQ
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Fycol

E

Fybeam

• Based on observed data, update the assumptions about the inputs and/or the model

Measured roof acceleration 

Predicted roof acceleration 
(from model being calibrated)

Fycol

E

Fybeam
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Inverse UQ Methods – Bayesian calibration
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• Based on observed data, update the distribution of the inputs to be consistent with 
the observations

Stiffness of structure
(Young’s modulus)

Max 
dispYoung’s modulus Max disp

Computer 
Simulation

Data

Young’s modulus Max disp

Computer 
Simulation

Distribution before 
observing data (prior)

Updated distribution after 
observing data (posterior)

• Calibration of material model
• Calibration of reduced order model
• Post-event damage diagnosis and 

prognosis
• Digital twin of structure – real time 

updating

Prediction before 
observing data

Prediction after 
observing data • Reliability updating
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Inverse UQ Methods – Model Class Selection / Averaging
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• Based on observed data, update the probability of a set of plausible models 

Data

Young’s modulus Max disp

Simulation 
Model 1

Data

Young’s modulus Max disp

Simulation 
Model m

Level 1

Model 1 probability

Model m probability

Level 2

• Model parsimony: if two models 
fit the data equally well, the 
simpler model is assigned higher 
probability 

• Model class selection – select 
the best model from the set and 
use for prediction

• Model class averaging – select all 
or the best few models, take 
weighted average of predictions 
from these models

“All models are wrong, but some are useful” 
– George E. P. Box
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Running UQ
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• Toolbox/software packages for UQ analysis
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quoFEM

UQ /
Optimization

engines

“You bring the FEM model, we do the rest”

▪ Build your own quoFEM
Github page: https://github.com/NHERI-SimCenter/quoFEM

▪ Tell us what you need
SimCenter Forum: http://simcenter-messageboard.designsafe-ci.org/smf/index.php

• Need more than what we have?

FEM app
(Opensees, FEAPpv, 

python, custom)

• A software tool with a user interface developed in SimCenter

https://github.com/NHERI-SimCenter/quoFEM
http://simcenter-messageboard.designsafe-ci.org/smf/index.php
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quoFEM (v.2.4)
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Sampling

Global
Sensitivity

Reliability

Parameter
Estimation

Bayesian 
Calibration

• DREAM

• OPT++GaussNewton
• NL2SOL

• Latin Hypercube Sampling
• Monte Carlo
• Gaussian Process Regression
• Polynomial Chaos Expansion

• Quasi-Monte Carlo

• Local Reliability (FORM, SORM,..)
• Global Reliability
• Importance Sampling

AlgorithmUQ TypeSimulation (FEM)
Model

• Custom UQ algorithm

• Gaussian process surrogate modeling
• Gaussian process multi-fidelity modeling

• TMCMC

• Probability-model-based approximation

Custom UQ

Surrogate 
Modeling

OpenSees

FEAPpv

OpenSeesPy

Custom

Surrogate
Model

(or any program written in python)
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quoFEM User Interface
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quoFEM User Interface
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Uncertainty Quantification

Finite Element Method

Random Variables

Quantities of Interest



Sang-ri Yi yisangri@berkeley.edu

quoFEM User Interface
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Uncertainty Quantification

Finite Element Method

Random Variables

Quantities of Interest
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quoFEM User Interface
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quoFEM User Interface
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Uncertainty Quantification

Finite Element Method

Random Variables

Quantities of Interest
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“An estimate without a standard error is practically meaningless.” (Jeffreys 1967)

• Deterministic result is just one of many possible outcomes

• In order to make decisions, we need to also know how probable the outcome is

• There are tools available out there 
to help you apply UQ methods

Conclusion
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Thank you for your attention!


