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SimCenter

Goal: Develop an open-source framework and extensible —
software tools for researchers in natural hazards engineering CHARACTERIZATION

HAZARD

Transformational software that supports uncertainty DECTRTEON

quantification (UQ), performance-based engineering,
community resilience

ASSET & EVENT

REPRESENTATIO

RESPONSE
ESTIMATION

“There is uncertainty inherent in all aspects of earthquake
engineering that needs to be addressed on an ongoing basis with
transformative research, process and code development, and

focused implementation programs.” PERFORMANCE

ASSESSMENT

UNCERTAINTY QUANTIFICATION
SUPPORTING DATABASES

- National Research Council 2011. Grand Challenges in Earthquake Engineering Research: A Community Workshop
Report. Washington, DC: The National Academies Press. https://doi.org/10.17226/13167

RECOVERY
SIMULATION

SimCenter’s scientific workflow
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Why UQ workflow?

PBE Framework (Adapted from Porter 2003)
ASSET
4 Hazard ) KStructuraI\ 4 Damage N toss )

; ] CHARACTERIZATION
Analysis Analysis Analysis Analysis

HAZARD
DESCRIPTION

ASSESSMENT
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Uncertainty from several sources, including:
® |nherent variability

= Model parameter uncertainty

= Model form uncertainty

| RECOVERY
SIMULATION

SimCenter’s scientific workflow
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SimCenter Applications

App | Component R2D
PBE
EE-UQ WE-UQ Hydro-UQ

,_ ’2\;
~ BRAILS
=T
quOFEM I =~
\\\ . SURF
arthquake  Wind  Tsunami/lnundation \ pelicun
Cloud uQ FEM EVENT SAM EDP DL -— bL REC  BE
Tapis Dakota OpenSees e e e MDOF_LU Hazus Data
Agave SimCenter UQ FEAPpv SHE B Gy shuaron S8 AutoSDA Pact Data
UCSD UQ OpenSeesPy SattrnDATA SRS
Custom UQ Custom FEM OpenFOAM, GeoClaw, ADCIRC External Data & Applications
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Types of UQ

Forward Uncertainty Quantification
Inverse Uncertainty Quantification

S SimCenterV B ey



Forward UQ

* Propagation of uncertainty from inputs to outputs

Simulation Model

Probability M} “WW” §3§ oy

distribution diﬁﬁfﬁ 2l =
L, 2TT .,: J:Q e
ﬁE%EEF e |, Alternative
e S Design
RS
- sl
i |
gaéiig By : > Max disp
| A tcais threshold
f !

(OpenSeespy user manual - Upadhyay) . .
K / Which design would you select?
| >

A

— Uncertainty quantification
is essential in making decisions
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https://openseespydoc.readthedocs.io/en/latest/src/ModelRendering.html

Forward UQ

* Based on assumptions on inputs, predict the uncertainty in outputs

Repair cost
. Mean expected down time
\ /\ Standard deviation of repair cost
/ Forward sampling
Computer o Probability of significant damage
/\ Simulation ° Reliability analysis
Down time [|mportance of each parameter
. \ Global sensitivity analysis

N” [\
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Forward UQ

* Let us first consider single RV / Response

Mean expected down time
Young’s modulus Response Standard deviation of repair cost '
Forward sampling
Computer Probability of significant damage
J\ =P Simulation g /\ Reliability analysis
Importance of each parameter
X Global sensitivity analysis

How do we get the input distribution?
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Probability distribution of RV

* Everything is possible but not everything is probable

7

Probability
distribution

N
d

Young’s modulus

Engineering Judgement + Observation

 Based on underlying physics of quantity * Bayesian updating
e Select a simple distribution and apply reasonable limits —inverse UQ
Examples o B 1

Known range of interest - Uniform distribution :
Assumption - Gaussian with 10% variation )

From reference Iy . .

9
6
3
0
-&‘ ) & o )
ST ST S

Measured You M dulus [MPal Measured Young's Modulus [MPa]
Aus cn i

/”m\“\mrrayago et al. 2020)
A

,@““ §° @Q @PQ H&*’Q

Mea: 's Modulus [MPal
ex

Ferritic D pl d L n Duplex
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Forward Propagation

* Based on assumptions on inputs, predict the uncertainty in outputs

Young’s modulus Response
Computer Mean o
—— Simulation —— Standar.0.| de\{lat!on |
Probability distribution
e A straightforward approach Monte Carlo sampling

* Is the model numerically expensive? Few simulations as much as possible
- Better UQ algorithms
e.g. Latin hyper cube sampling
- Approximation methods
e.g. Surrogate modeling
- Combination of both
e.g. Multi-fidelity modeling
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Reliability Analysis

* Probability of the response exceeding a threshold level
* Important for design decision

Young’s modulus

Computer Response ithreshold

j\ . Simulation I
AN

* A straightforward approach: Monte Carlo sampling

* When the model is expensive & when failure probability is low
It is desirable to reduce the number of simulations To reduce the number of simulations
- Better UQ algorithms
Importance sampling, subset simulation
- Approximation methods
NPy <01 Surrogate modeling, First-order approximations

P = 10% requires 1000 simulations
Pr =0.001% requires 1000000 simulations

C.0.V =

1-P - Combination of both
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Global Sensitivity Analysis

F.

Are all the parameters y,beam
equally impacting the

response? /\ Max disp
i Max Computer

13 ”’5’93 » 8;_‘ diS . . . ﬁ
Epeam S sy P P Fy,col Simulation

. - bl a /\ Compared to the other variables,

y,bea et T Ey, co1 is less important.
- Lufs 7 — You might want to let F,, ., be deterministic
2 <L C18 5 N M N
{1l sl Max : ax
Fy col . sensitivity sensitivity
Probably not. ® °
. ‘g O o
Then what are thg varlab_les O\\°9$o° S=0.9 RRPRREI L__‘:;—-- S=0.05
that are actually influential? Tme-gTaT o |\° o o _
Fy,beam Fy,col
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Surrogate modeling

* Response surface representation

Max disp.
One parameter Two parameters

N Max disp.
Max disp.

Max disp. = f(Young’s modulus)

N

7
Young’s modulus

Damping ratio

' Young’s modulus
Young’s modulus

e Usually the curve (surface) is very flexible & general
Neural networks, Gaussian process model, polynomial chaos...

* Design of experiments are used to reduce the number of simulations
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Types of UQ

Forward Uncertainty Quantification
Inverse Uncertainty Quantification
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Inverse UQ

* Based on observed data, update the assumptions about the inputs and/or the model
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Inverse UQ Methods — Bayesian calibration

 Based on observed data, update the distribution of the inputs to be consistent with
the observations

Max 2

Young’s modulus Max disp disp

Computer

,prﬂﬂk‘ T  Simulation T~ ZIEN
Distribution before Prediction before § s ooomme -" °
observing data (prior) observing data Stiffness of structure
(Young’s modulus)

Young’s modulus Max disp * Calibration of material model

Computer * Calibration of reduced order model

— ,O i .e —l * Post-event damage diagnosis and
Simulation Drognosis
com o Data  ° Digital twin of structure —real time

Updated distribution after Prediction after updating
observing data (posterior) observing data e Reliability updating
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Inverse UQ Methods — Model Class Selection / Averaging

 Based on observed data, update the probability of a set of plausible models

6@’5 modulus

Young’s modulus

@ﬂﬂm

Max dD

“All models are wrong, but some are useful”

— George E. P. Box

&odel 1 probability\

Simulation
= Model 1 >
: bata
Max disp
Simulation
Model m
Data
Level 1
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Model m probability

\ Level 2 / )
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* Model parsimony: if two models

fit the data equally well, the
simpler model is assigned higher
probability

* Model class selection — select
the best model from the set and
use for prediction

Model class averaging — select all
or the best few models, take
weighted average of predictions
from these models



Running UQ

* Toolbox/software packages for UQ analysis

uQ|[py]Lab

Uncertainty Quantification
with Python, powered by
UQLab

JOIN THE BETA
Learn More
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quoFEM

* A software tool with a user interface developed in SimCenter

FEM app uQ/

(Opensees, FEAPpy, Optimization
python, custom) T ES

“You bring the FEM model, we do the rest”

e Need more than what we have?

= Build your own quoFEM
Github page: https://github.com/NHERI-SimCenter/quoFEM

= Tell us what you need
SimCenter Forum: http://simcenter-messageboard.designsafe-ci.org/smf/index.php

S SimCenterV\ Bl ey



https://github.com/NHERI-SimCenter/quoFEM
http://simcenter-messageboard.designsafe-ci.org/smf/index.php

qUOFEM (v.2.4)

v

v

v

Simulation (FEM) UQ Type
Model
Sampling
OpenSees
Global_ '
FEAPpv Sensitivity
Reliabilit
OpenSeesPy SHabThy
(or any program written in python)
Parameter

;‘\‘V Estimation
Bayesian

Y / \%\\\
"é\\\\\ Calibration

v

v

Surrogate
Model

v

SN\
\\\Y Custom UQ
Surrogate

Modeling

A 4
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Algorithm

Latin Hypercube Sampling
Monte Carlo

Gaussian Process Regression
Polynomial Chaos Expansion

Quasi-Monte Carlo
Probability-model-based approximation

Local Reliability (FORM, SORM,..)
Global Reliability
Importance Sampling

OPT++GaussNewton
NL2SOL

DREAM
TMCMC

Custom UQ algorithm

Gaussian process surrogate modeling
Gaussian process multi-fidelity modeling



quoFEM User Interface

e quoFEM — O >

File View Help Examples

UQ Engine Dakota -

Dakota Method Category Forward Propaaation Parallel Execution

Method LHS Parameters Estimation
Inverse Problem
Reliability Analysis

Sensitivity Analysis

# Samples 500
Seed 482

T BT BT I S

Program Qutput g X

19:33:01 - Welcome to quoFEM
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quoFEM User Interface

I inputjson

File View Help Examples

Finite Element Method Application

OpenSees A

OpenSeesPy
Input Script C:fSimCenter/quoFEM/Exg Custom
SurrogateGP
Postprocess Script C:/SimCenter/quoFEM/Bxamples/qfem-0001/src/TrussPost.tcl

il

I TR BT T T S

Program OQutput g X

~

17:40:09 - Welcome to quoFEM

15:28:08 - Loading BExample: Two-Dimensional Truss: Sampling, Reliability and Sensitivity
15:28:08 - Bxample Loaded
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quoFEM User Interface

3 inputjson — O >
File View Help Examples

it oo Ve = Corsiom v
Variable Name  Distribution Mean Standard Dev

O E Lognormal j 205 15 m I8 Correlation Matrix ? b4
Variable Name Distribution Mean Standard Dev

O * Norml | 2 3 [show PF E A L
N —— Mean Standard Deu =10 00 00 00

O Ao Loanormal | 250 10 m P00

Variable Name  Distribution Mean Standard Dev Ao 0.0 0.0

O Au Normal ~| 500 25 m Au 0.0 0.0 m-

T TR BT T I S

Program Output g X

17:40:09 - Welcome to quoFEM ~
18:28:08 - Loading Example: Two-Dimensional Truss: Sampling, Reliability and Sensitivity
18:28:08 - Example Loaded
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quoFEM User Interface

I input.json

File View Help Examples

— O x
Guants o terest i
Variable Name Length
Mode_3_Disp_2 1
O Variable Name Length
MNode_2_Disp_2 1
e Tp— E— T
Program Output & X
17:40:09 - Welcome to quoFEM
18:28:08 - Loading Example: Two-Dimensional Truss: Sampling, Reliability and Sensitivity
18:28:08 - BExample Loaded

~
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quoFEM User Interface

2% input.json

File View Help Examples

quoFEM Application
Summary  Data Values
Node_3_Disp_2 Sobol' indices:

Random Variable Main

P 0.777
Au 0.025
E 0.389
Ao 0.068

Node_2_Disp_2 Sobol' indices:

Random Variable Main

P

Au
E

Ao

T TR BT T T S

Program Output

11:31:48 - Running Analysis..
11:32:21 - Processing Results
11:32:21 - Processing Results ...
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Conclusion

“An estimate without a standard error is practically meaningless.” (Jeffreys 1967)
e Deterministic result is just one of many possible outcomes
* |In order to make decisions, we need to also know how probable the outcome is

* There are tools available out there
to help you apply UQ methods

Thank you for your attention!
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